Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Hum Genet ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578438

RESUMO

CLCN4-related disorder is a rare X-linked neurodevelopmental condition with a pathogenic mechanism yet to be elucidated. CLCN4 encodes the vesicular 2Cl-/H+ exchanger ClC-4, and CLCN4 pathogenic variants frequently result in altered ClC-4 transport activity. The precise cellular and molecular function of ClC-4 remains unknown; however, together with ClC-3, ClC-4 is thought to have a role in the ion homeostasis of endosomes and intracellular trafficking. We reviewed our research database for patients with CLCN4 variants and epilepsy, and performed thorough phenotyping. We examined the functional properties of the variants in mammalian cells using patch-clamp electrophysiology, protein biochemistry, and confocal fluorescence microscopy. Three male patients with developmental and epileptic encephalopathy were identified, with differing phenotypes. Patients #1 and #2 had normal growth parameters and normal-appearing brains on MRI, while patient #3 had microcephaly, microsomia, complete agenesis of the corpus callosum and cerebellar and brainstem hypoplasia. The p.(Gly342Arg) variant of patient #1 significantly impaired ClC-4's heterodimerization capability with ClC-3 and suppressed anion currents. The p.(Ile549Leu) variant of patient #2 and p.(Asp89Asn) variant of patient #3 both shift the voltage dependency of transport activation by 20 mV to more hyperpolarizing potentials, relative to the wild-type, with p.(Asp89Asn) favouring higher transport activity. We concluded that p.(Gly342Arg) carried by patient #1 and the p.(Ile549Leu) expressed by patient #2 impair ClC-4 transport function, while the p.(Asp89Asn) variant results in a gain-of-transport function; all three variants result in epilepsy and global developmental impairment, but with differences in epilepsy presentation, growth parameters, and presence or absence of brain malformations.

2.
Brain Commun ; 6(2): fcae109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601917

RESUMO

Metformin restores the myelination potential of aged rat A2B5+ oligodendrocyte progenitor cells and may enhance recovery in children with post-radiation brain injury. Human late progenitor cells (O4+A2B5+) have a superior capacity to ensheath nanofibres compared to mature oligodendrocytes, with cells from paediatric sources exceeding adults. In this study, we assessed the effects of metformin on ensheathment capacity of human adult and paediatric progenitors and mature oligodendrocytes and related differences to transcriptional changes. A2B5+ progenitors and mature cells, derived from surgical tissues by immune-magnetic separation, were assessed for ensheathment capacity in nanofibre plates over 2 weeks. Metformin (10 µM every other day) was added to selected cultures. RNA was extracted from treated and control cultures after 2 days. For all ages, ensheathment by progenitors exceeded mature oligodendrocytes. Metformin enhanced ensheathment by adult donor cells but reduced ensheathment by paediatric cells. Metformin marginally increased cell death in paediatric progenitors. Metformin-induced changes in gene expression are distinct for each cell type. Adult progenitors showed up-regulation of pathways involved in the process of outgrowth and promoting lipid biosynthesis. Paediatric progenitors showed a relatively greater proportion of down- versus up-regulated pathways, these involved cell morphology, development and synaptic transmission. Metformin-induced AMP-activated protein kinase activation in all cell types; AMP-activated protein kinase inhibitor BML-275 reduced functional metformin effects only with adult cells. Our results indicate age and differentiation stage-related differences in human oligodendroglia lineage cells in response to metformin. Clinical trials for demyelinating conditions will indicate how these differences translate in vivo.

3.
Am J Hum Genet ; 111(4): 761-777, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503299

RESUMO

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Assuntos
Epilepsia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Canais de Potássio Shab , Animais , Humanos , Potenciais de Ação , Epilepsia/genética , Neurônios , Oócitos , Xenopus laevis , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo , Transtornos do Neurodesenvolvimento/genética
4.
Genet Med ; 26(5): 101097, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334070

RESUMO

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.

5.
Mov Disord ; 39(2): 400-410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314870

RESUMO

BACKGROUND: Congenital mirror movements (CMM) is a rare neurodevelopmental disorder characterized by involuntary movements from one side of the body that mirror voluntary movements on the opposite side. To date, five genes have been associated with CMM, namely DCC, RAD51, NTN1, ARHGEF7, and DNAL4. OBJECTIVE: The aim of this study is to characterize the genetic landscape of CMM in a large group of 80 affected individuals. METHODS: We screened 80 individuals with CMM from 43 families for pathogenic variants in CMM genes. In large CMM families, we tested for presence of pathogenic variants in multiple affected and unaffected individuals. In addition, we evaluated the impact of three missense DCC variants on binding between DCC and Netrin-1 in vitro. RESULTS: Causal pathogenic/likely pathogenic variants were found in 35% of probands overall, and 70% with familial CMM. The most common causal gene was DCC, responsible for 28% of CMM probands and 80% of solved cases. RAD51, NTN1, and ARHGEF7 were rare causes of CMM, responsible for 2% each. Penetrance of CMM in DCC pathogenic variant carriers was 68% and higher in males than females (74% vs. 54%). The three tested missense variants (p.Ile164Thr; p.Asn176Ser; and p.Arg1343His) bind Netrin-1 similarly to wild type DCC. CONCLUSIONS: A genetic etiology can be identified in one third of CMM individuals, with DCC being the most common gene involved. Two thirds of CMM individuals were unsolved, highlighting that CMM is genetically heterogeneous and other CMM genes are yet to be discovered. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesias , Transtornos dos Movimentos , Masculino , Feminino , Humanos , Netrina-1/genética , Receptor DCC/genética , Transtornos dos Movimentos/genética , Mutação de Sentido Incorreto/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética
6.
Nat Commun ; 15(1): 1524, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374028

RESUMO

Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.


Assuntos
Grânulos Citoplasmáticos , Esclerose Múltipla , Humanos , Grânulos Citoplasmáticos/metabolismo , Grânulos de Estresse , Oligodendroglia , Citocinas/metabolismo , Estresse Fisiológico , Esclerose Múltipla/metabolismo
7.
J Neurol ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261030

RESUMO

We evaluated the utility of genetic testing in the pre-surgical evaluation of pediatric patients with drug-resistant focal epilepsy. This single-center retrospective study reviewed the charts of all pediatric patients referred for epilepsy surgery evaluation over a 5-year period. We extracted and analyzed results of genetic testing as well as clinical, EEG, and neuroimaging data. Of 125 patients referred for epilepsy surgical evaluation, 86 (69%) had some form of genetic testing. Of these, 18 (21%) had a pathogenic or likely pathogenic variant identified. Genes affected included NPRL3 (3 patients, all related), TSC2 (3 patients), KCNH1, CHRNA4, SPTAN1, DEPDC5, SCN2A, ARX, SCN1A, DLG4, and ST5. One patient had ring chromosome 20, one a 7.17p12 duplication, and one a 15q13 deletion. In six patients, suspected epileptogenic lesions were identified on brain MRI that were thought to be unrelated to the genetic finding. A specific medical therapy choice was allowed due to genetic diagnosis in three patients who did not undergo surgery. Obtaining a molecular diagnosis may dramatically alter management in pediatric patients with drug-resistant focal epilepsy. Genetic testing should be incorporated as part of standard investigations in the pre-surgical work-up of pediatric patients with drug-resistant focal epilepsy.

8.
Neurol Genet ; 9(6): e200103, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37900581

RESUMO

Background and Objectives: Somatic and germline pathogenic variants in genes of the mammalian target of rapamycin (mTOR) signaling pathway are a common mechanism underlying a subset of focal malformations of cortical development (FMCDs) referred to as mTORopathies, which include focal cortical dysplasia (FCD) type II, subtypes of polymicrogyria, and hemimegalencephaly. Our objective is to screen resected FMCD specimens with mTORopathy features on histology for causal somatic variants in mTOR pathway genes, describe novel pathogenic variants, and examine the variant distribution in relation to neuroimaging, histopathologic classification, and clinical outcomes. Methods: We performed ultra-deep sequencing using a custom HaloPlexHS Target Enrichment kit in DNA from 21 resected fresh-frozen histologically confirmed FCD type II, tuberous sclerosis complex, or hemimegalencephaly specimens. We mapped the variant alternative allele frequency (AAF) across the resected brain using targeted ultra-deep sequencing in multiple formalin-fixed paraffin-embedded tissue blocks. We also functionally validated 2 candidate somatic MTOR variants and performed targeted RNA sequencing to validate a splicing defect associated with a novel DEPDC5 variant. Results: We identified causal mTOR pathway gene variants in 66.7% (14/21) of patients, of which 13 were somatic with AAF ranging between 0.6% and 12.0%. Moreover, the AAF did not predict balloon cell presence. Favorable seizure outcomes were associated with genetically clear resection borders. Individuals in whom a causal somatic variant was undetected had excellent postsurgical outcomes. In addition, we demonstrate pathogenicity of the novel c.4373_4375dupATG and candidate c.7499T>A MTOR variants in vitro. We also identified a novel germline aberrant splice site variant in DEPDC5 (c.2802-1G>C). Discussion: The AAF of somatic pathogenic variants correlated with the topographic distribution, histopathology, and postsurgical outcomes. Moreover, cortical regions with absent histologic FCD features had negligible or undetectable pathogenic variant loads. By contrast, specimens with frank histologic abnormalities had detectable pathogenic variant loads, which raises important questions as to whether there is a tolerable variant threshold and whether surgical margins should be clean, as performed in tumor resections. In addition, we describe 2 novel pathogenic variants, expanding the mTORopathy genetic spectrum. Although most pathogenic somatic variants are located at mutation hotspots, screening the full-coding gene sequence remains necessary in a subset of patients.

9.
Acta Neuropathol Commun ; 11(1): 108, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37408029

RESUMO

Oligodendrocyte (OL) injury and loss are central features of evolving lesions in multiple sclerosis. Potential causative mechanisms of OL loss include metabolic stress within the lesion microenvironment. Here we use the injury response of primary human OLs (hOLs) to metabolic stress (reduced glucose/nutrients) in vitro to help define the basis for the in situ features of OLs in cases of MS. Under metabolic stress in vitro, we detected reduction in ATP levels per cell that precede changes in survival. Autophagy was initially activated, although ATP levels were not altered by inhibitors (chloroquine) or activators (Torin-1). Prolonged stress resulted in autophagy failure, documented by non-fusion of autophagosomes and lysosomes. Consistent with our in vitro results, we detected higher expression of LC3, a marker of autophagosomes in OLs, in MS lesions compared to controls. Both in vitro and in situ, we observe a reduction in nuclear size of remaining OLs. Prolonged stress resulted in increased ROS and cleavage of spectrin, a target of Ca2+-dependent proteases. Cell death was however not prevented by inhibitors of ferroptosis or MPT-driven necrosis, the regulated cell death (RCD) pathways most likely to be activated by metabolic stress. hOLs have decreased expression of VDAC1, VDAC2, and of genes regulating iron accumulation and cyclophilin. RNA sequencing analyses did not identify activation of these RCD pathways in vitro or in MS cases. We conclude that this distinct response of hOLs, including resistance to RCD, reflects the combined impact of autophagy failure, increased ROS, and calcium influx, resulting in metabolic collapse and degeneration of cellular structural integrity. Defining the basis of OL injury and death provides guidance for development of neuro-protective strategies.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Espécies Reativas de Oxigênio/metabolismo , Oligodendroglia/patologia , Morte Celular , Esclerose Múltipla Crônica Progressiva/patologia , Trifosfato de Adenosina/metabolismo
10.
Sci Adv ; 9(19): eadd5501, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172092

RESUMO

Mirror movements (MM) disorder is characterized by involuntary movements on one side of the body that mirror intentional movements on the opposite side. We performed genetic characterization of a family with autosomal dominant MM and identified ARHGEF7, a RhoGEF, as a candidate MM gene. We found that Arhgef7 and its partner Git1 bind directly to Dcc. Dcc is the receptor for Netrin-1, an axon guidance cue that attracts commissural axons to the midline, promoting the midline crossing of axon tracts. We show that Arhgef7 and Git1 are required for Netrin-1-mediated axon guidance and act as a multifunctional effector complex. Arhgef7/Git1 activates Rac1 and Cdc42 and inhibits Arf1 downstream of Netrin-1. Furthermore, Arhgef7/Git1, via Arf1, mediates the Netrin-1-induced increase in cell surface Dcc. Mice heterozygous for Arhgef7 have defects in commissural axon trajectories and increased symmetrical paw placements during skilled walking, a MM-like phenotype. Thus, we have delineated how ARHGEF7 mutation causes MM.


Assuntos
Fatores de Crescimento Neural , Proteínas Supressoras de Tumor , Camundongos , Animais , Receptor DCC/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fatores de Crescimento Neural/metabolismo , Netrina-1/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Axônios/metabolismo
11.
Children (Basel) ; 10(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37189898

RESUMO

Holoprosencephaly (HPE) is the most common malformation of the prosencephalon in humans. It is characterized by a continuum of structural brain anomalies resulting from the failure of midline cleavage of the prosencephalon. The three classic subtypes of HPE are alobar, semilobar and lobar, although a few additional categories have been added to this original classification. The severity of the clinical phenotype is broad and usually mirrors the radiologic and associated facial features. The etiology of HPE includes both environmental and genetic factors. Disruption of sonic hedgehog (SHH) signaling is the main pathophysiologic mechanism underlying HPE. Aneuploidies, chromosomal copy number variants and monogenic disorders are identified in a large proportion of HPE patients. Despite the high postnatal mortality and the invariable presence of developmental delay, recent advances in diagnostic methods and improvements in patient management over the years have helped to increase survival rates. In this review, we provide an overview of the current knowledge related to HPE, and discuss the classification, clinical features, genetic and environmental etiologies and management.

12.
Hum Genet ; 142(7): 909-925, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183190

RESUMO

Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell-cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with "Pitt-Hopkins-like syndrome-1" (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype-phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype-phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Humanos , Criança , Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Estudos de Associação Genética , Convulsões/genética , Contactinas/genética
13.
Am J Med Genet A ; 191(9): 2416-2421, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248744

RESUMO

Heterozygous pathogenic variants in PPP2R5D gene are associated with PPP2R5D-related neurodevelopmental disorder, a rare autosomal dominant condition, characterized by neurodevelopmental impairment in childhood, macrocephaly/megalencephaly, hypotonia, epilepsy, and dysmorphic features. Up-to-date, only approximately 100 cases have been published in the literature and the full phenotypic and genotypic spectrum have not yet been fully described. PPP2R5D gene encodes the B56δ subunit of the PP2A enzyme complex. We describe a neonatal form of PPP2R5D-related disorder with early infantile death, caused by a novel in-frame deletion causing loss of 8 amino acids and insertion of serine at position 201 (p.Phe194_Pro201delinsSer) of the B56δ subunit. This deletion is predicted to disrupt a critical acidic loop of amino acids important for binding other subunits of the PP2A enzyme complex, and harbors many of the residues previously reported to cause a mild-moderate form of this condition. This report describes a neonatal lethal presentation of the PPP2R5D-related neurodevelopmental disorder and provides additional evidence that disruption of the acidic loop is an important pathomechanism underlying PPP2R5D-related disorder.


Assuntos
Transtornos do Neurodesenvolvimento , Recém-Nascido , Humanos , Transtornos do Neurodesenvolvimento/genética , Aminoácidos , Genótipo , Proteína Fosfatase 2/genética
14.
J Neuroinflammation ; 20(1): 132, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254100

RESUMO

BACKGROUND: Microglia are tissue resident macrophages with a wide range of critically important functions in central nervous system development and homeostasis. METHOD: In this study, we aimed to characterize the transcriptional landscape of ex vivo human microglia across different developmental ages using cells derived from pre-natal, pediatric, adolescent, and adult brain samples. We further confirmed our transcriptional observations using ELISA and RNAscope. RESULTS: We showed that pre-natal microglia have a distinct transcriptional and regulatory signature relative to their post-natal counterparts that includes an upregulation of phagocytic pathways. We confirmed upregulation of CD36, a positive regulator of phagocytosis, in pre-natal samples compared to adult samples in situ. Moreover, we showed adult microglia have more pro-inflammatory signature compared to microglia from other developmental ages. We indicated that adult microglia are more immune responsive by secreting increased levels of pro-inflammatory cytokines in response to LPS treatment compared to the pre-natal microglia. We further validated in situ up-regulation of IL18 and CXCR4 in human adult brain section compared to the pre-natal brain section. Finally, trajectory analysis indicated that the transcriptional signatures adopted by microglia throughout development are in response to a changing brain microenvironment and do not reflect predetermined developmental states. CONCLUSION: In all, this study provides unique insight into the development of human microglia and a useful reference for understanding microglial contribution to developmental and age-related human disease.


Assuntos
Microglia , Transcriptoma , Humanos , Criança , Adolescente , Microglia/metabolismo , Longevidade , Fagocitose , Análise de Sequência de RNA
15.
J Child Neurol ; 38(5): 329-335, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37225698

RESUMO

Parents of children with genetically determined leukoencephalopathies play a major role in their children's health care. We sought to gain a better understanding of their experience with the public health care system in Quebec, Canada, to obtain suggestions for improving their services, and to identify modifiable factors to improve their quality of life. We conducted interviews with 13 parents. Data was analyzed thematically. Five themes were identified: challenges of the diagnostic odyssey, limited access to services, excessive parental responsibilities, positive relationships with health care professionals as a facilitator of care, and benefits of a specialized leukodystrophy clinic. Parents felt like waiting for the diagnosis was extremely stressful, and they expressed their need for transparency during this period. They identified multiple gaps and barriers in the health care system, which burdened them with many responsibilities. Parents emphasized the importance of a positive relationship with their child's health care professionals. They also felt grateful for being followed at a specialized clinic as it improved the quality of care received.


Assuntos
Pais , Qualidade de Vida , Criança , Humanos , Atenção à Saúde , Canadá , Quebeque
16.
J Neurol ; 270(8): 3934-3945, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37119372

RESUMO

BACKGROUND: Periventricular nodular heterotopia (PVNH) is a congenital brain malformation often associated with seizures. We aimed to clarify the spectrum of epilepsy phenotypes in PVNH and the significance of specific brain malformation patterns. METHODS: In this retrospective cohort study, we recruited people with PVNH and a history of seizures, and collected data via medical record review and a standardized questionnaire. RESULTS: One hundred individuals were included, aged 1 month to 61 years. Mean seizure onset age was 7.9 years. Ten patients had a self-limited epilepsy course and 35 more were pharmacoresponsive. Fifty-five had ongoing seizures, of whom 23 met criteria for drug resistance. Patients were subdivided as follows: isolated PVNH ("PVNH-Only") single nodule (18) or multiple nodules (21) and PVNH with additional brain malformations ("PVNH-Plus") single nodule (8) or multiple nodules (53). Of PVNH-Only single nodule, none had drug-resistant seizures. Amongst PVNH-Plus, 55% with multiple unilateral nodules were pharmacoresponsive, compared to only 21% with bilateral nodules. PVNH-Plus with bilateral nodules demonstrated the highest proportion of drug resistance (39%). A review of genetic testing results revealed eight patients with pathogenic or likely pathogenic single-gene variants, two of which were FLNA. Five had copy number variants, two of which were pathogenic. CONCLUSIONS: The spectrum of epilepsy phenotypes in PVNH is broad, and seizure patterns are variable; however, epilepsy course may be predicted to an extent by the pattern of malformation. Overall, drug-resistant epilepsy occurs in approximately one quarter of affected individuals. When identified, genetic etiologies are very heterogeneous.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Heterotopia Nodular Periventricular , Humanos , Epilepsia Resistente a Medicamentos/genética , Eletroencefalografia , Epilepsia/complicações , Epilepsia/genética , Imageamento por Ressonância Magnética , Heterotopia Nodular Periventricular/complicações , Heterotopia Nodular Periventricular/diagnóstico por imagem , Heterotopia Nodular Periventricular/genética , Estudos Retrospectivos , Convulsões , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
17.
Eur J Paediatr Neurol ; 44: 46-50, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37075569

RESUMO

BACKGROUND: Wiedemann-Steiner Syndrome (WSTS) is a rare chromatinopathy caused by pathogenic variants in KMT2A. WSTS is characterized by neurodevelopmental disorders and distinct dysmorphic features. Epilepsy has been reported in only 33 individuals with WSTS, with only limited clinical details described. METHODS: We identified patients with pathogenic KMT2A variants and epilepsy, and performed thorough phenotyping. RESULTS: Five patients were identified, all of whom presented with developmental and epileptic encephalopathy (DEE). Epilepsy syndromes observed included Lennox-Gastaut syndrome [2], infantile epileptic spasms syndrome, and DEE with spike-wave activation in sleep. Seizure types observed included absence, generalized tonic-clonic, myoclonic, tonic, atonic, epileptic spasms, and focal seizures. CONCLUSIONS: The spectrum of epilepsy phenotypes in patients with WSTS can be broad, but presentation is typically severe, usually involving a form of DEE.


Assuntos
Epilepsias Mioclônicas , Deficiência Intelectual , Espasmos Infantis , Humanos , Epilepsias Mioclônicas/genética , Eletroencefalografia , Convulsões , Espasmos Infantis/genética , Espasmo
18.
Children (Basel) ; 10(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979972

RESUMO

Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.

19.
Cerebellum ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971923

RESUMO

The term Pontocerebellar Hypoplasia (PCH) was initially used to designate a heterogeneous group of fetal-onset genetic neurodegenerative disorders. As a descriptive term, PCH refers to pons and cerebellum of reduced volume. In addition to the classic PCH types described in OMIM, many other disorders can result in a similar imaging appearance. This study aims to review imaging, clinical and genetic features and underlying etiologies of a cohort of children with PCH on imaging. We systematically reviewed brain images and clinical charts of 38 patients with radiologic evidence of PCH. Our cohort included 21 males and 17 females, with ages ranging between 8 days to 15 years. All individuals had pons and cerebellar vermis hypoplasia, and 63% had cerebellar hemisphere hypoplasia. Supratentorial anomalies were found in 71%. An underlying etiology was identified in 68% and included chromosomal (21%), monogenic (34%) and acquired (13%) causes. Only one patient had pathogenic variants in an OMIM listed PCH gene. Outcomes were poor regardless of etiology, though no one had regression. Approximately one third of patients deceased at a median age of 8 months. All individuals had global developmental delay, 50% were non-verbal, 64% were non-ambulatory and 45% required gastrostomy feeding. This cohort demonstrates that radiologic PCH has heterogenous etiologies and the "classic" OMIM-listed PCH genes underlie only a minority of cases. Broad genetic testing, including chromosomal microarray and exome or multigene panels, is recommended in individuals with PCH-like imaging appearance. Our results strongly suggest that the term PCH should be used to designate radiologic findings, and not to imply neurogenerative disorders.

20.
J Med Genet ; 60(6): 523-532, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36822643

RESUMO

PURPOSE AND SCOPE: The aim of this position statement is to provide recommendations for clinicians regarding the use of genetic and metabolic investigations for patients with neurodevelopmental disorders (NDDs), specifically, patients with global developmental delay (GDD), intellectual disability (ID) and/or autism spectrum disorder (ASD). This document also provides guidance for primary care and non-genetics specialists caring for these patients while awaiting consultation with a clinical geneticist or metabolic specialist. METHODS OF STATEMENT DEVELOPMENT: A multidisciplinary group reviewed existing literature and guidelines on the use of genetic and metabolic investigations for the diagnosis of NDDs and synthesised the evidence to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and to the Canadian Pediatric Society (Mental Health and Developmental Disabilities Committee); following incorporation of feedback, it was approved by the CCMG Board of Directors on 1 September 2022. RESULTS AND CONCLUSIONS: Chromosomal microarray is recommended as a first-tier test for patients with GDD, ID or ASD. Fragile X testing should also be done as a first-tier test when there are suggestive clinical features or family history. Metabolic investigations should be done if there are clinical features suggestive of an inherited metabolic disease, while the patient awaits consultation with a metabolic physician. Exome sequencing or a comprehensive gene panel is recommended as a second-tier test for patients with GDD or ID. Genetic testing is not recommended for patients with NDDs in the absence of GDD, ID or ASD, unless accompanied by clinical features suggestive of a syndromic aetiology or inherited metabolic disease.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Médicos , Humanos , Criança , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Canadá , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Testes Genéticos/métodos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...